Molecular docking and inhibition of matrix metalloproteinase-2 by novel difluorinatedbenzylidene curcumin analog.
نویسندگان
چکیده
We recently described the synthesis and characterization of a novel difluorinatedbenzylidene analog of curcumin, commonly referred as CDF, which demonstrated significantly enhanced bioavailability and in vivo anticancer activity. CDF targets many factors similar to curcumin, albeit with more potency, as reported previously. To further highlight this differential behavior of CDF, we chose matrix metalloproteinase protein MMP-2 which is involved in the processes of invasion and metastasis of human tumors. Both curcumin and CDF were characterized for their binding characteristics using in silico docking studies; they were also evaluated via biological assays involving gelatin zymography, miRNA analysis, invasion assays and ELISA. CDF was found to inhibit MMP-2 expression and activity in A549 and H1299 NSCLC cells much more effectively than curcumin, validating molecular modeling results. miR-874, an MMP-2-targeting miRNA, was up-regulated by CDF. Thus, it appears that CDF can inhibit MMP-2 through multiple mechanisms. Our results are suggestive of a more potent inhibition of invasion and metastasis by CDF, compared to curcumin, thus warranting its further evaluation as an effective anticancer agent.
منابع مشابه
Molecular Docking Studies of Curcumin Derivatives with Multiple Protein Targets for Procarcinogen Activating Enzyme Inhibition
Curcumin derivatives which are very potent antioxidant, free radical scavenger and known inhibitor of dioxygenases have been extensively studied to explore their potential utilization in chemoprevention. The main objective of the present work is to perform a docking analysis of curcumin derivatives: Tetrahydrocurcumin (THC), Bisdemethoxy curcumin (BDC). Docking studies of these were performed u...
متن کاملCurcumin binds in silico to anti-cancer drug target enzyme MMP-3 (human stromelysin-1) with affinity comparable to two known inhibitors of the enzyme
In silico interaction of curcumin with the enzyme MMP-3 (human stromelysin-1) was studied by molecular docking using AutoDock 4.2 as the docking software application. AutoDock 4.2 software serves as a valid and acceptable docking application to study the interactions of small compounds with proteins. Interactions of curcumin with MMP-3 were compared to those of two known inhibitors of the enzym...
متن کاملMolecular docking study of anti-viral FDA-approved drugs as novel entry and replication Ebola viral inhibitors
Background & Objective: Because of the reported high ability of virulence and the lack of appropriate drug of Ebola virus during the last decades, many investigations have been accomplished regarding discovery and the introduction of anti-Ebola drugs. The aim of this research was the bioinformatical study of entry and replication of Ebola viral inhibition by drug repurposing. Materials & Method...
متن کاملCurcumin effects on myeloperoxidase, interleukin-18 and matrix metalloproteinase-9 inflammatory biomarkers in patients with unstable angina: A randomized clinical trial
Objective: Inflammation along with oxidative stress plays an important role in the development, progression, instability and rupture of coronary atherosclerotic plaques. Several studies introduced curcumin (diferuloylmethane) as a wonderful chemical in Curcuma longa<span style="font-size: m...
متن کاملMolecular Docking of Curcumin With Breast Cancer Cell Line Proteins
Background: Breast cancer is known as the most widely recognized dangerous tumors; therefore, the most common reason for mortality among all instances of harmful neoplastic illness in females. This is because the lack of specific signs and symptoms at the early stage and at the aggressive nature. Currently, breast cancer treatment such as chemotherapy, surgery and radiotherapy has not been effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of translational research
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2015